Please create an account or Login! Have fun!

David Stolp: Difference between revisions

Jump to navigation Jump to search
(updated his unsolved levels info)
(Official levels update + formatting)
Line 4: Line 4:


== Levels in official packs ==
== Levels in official packs ==
=== CCLP3 ===
=== [[Chip's Challenge Level Pack 3|CCLP3]] ===
* [[Road Block]]
{| class="wikitable sortable"
* [[Possible]]
! # !! Name
* [[Triple Maze]]
|-
* [[Mice Are Good for Something]]
| 13 || [[Road Block]]
* [[Investment]]
|-
* [[Color Wheel]]
| 81 || [[Possible]]
* [[Waterslide]]
|-
* [[Same Game]]
| 115 || [[Triple Maze]]
* [[Avalanche]]
|-
| 117 || [[Mice Are Good for Something]]
|-
| 123 || [[Investment]]
|-
| 135 || [[Color Wheel]]
|-
| 138 || [[Waterslide]]
|-
| 143 || [[Same Game]]
|-
| 147 || [[Avalanche]]
|}
 
=== [[Chip's Challenge 2 Level Pack 1|CC2LP1]]===
{| class="wikitable sortable"
! # !! Name
|-
| 162 || [[Ode to a Tank Crossing the Road]]
|}


== CC scores ==
== CC scores ==

Revision as of 05:25, 10 March 2024

David Stolp.gif

David Stolp, often known by his nickname pieguy, is widely regarded as one of the best, if not the best, player in Chip's Challenge and one of the most influential and revolutionary Chipsters that has existed. He announced his retirement from competitive play around the time CCLP1 was released, but has since returned.

Levels in official packs

CCLP3

# Name
13 Road Block
81 Possible
115 Triple Maze
117 Mice Are Good for Something
123 Investment
135 Color Wheel
138 Waterslide
143 Same Game
147 Avalanche

CC2LP1

# Name
162 Ode to a Tank Crossing the Road

CC scores

His score in CC1, an astounding 5,977,790, was for a time embroiled in a struggle for first place. Andrew Bennett tied him once, but J.B. Lewis, with Andrew's assistance on Blobnet play, gained 2 seconds over David. Then in 2012 after gaining four extra seconds in Lemmings, Spooks, and Amsterdam, he reclaimed the top position. In reply, J.B. Lewis came back over him and gained 1 second over David. Then David gained 5 seconds on Cake Walk to reclaim the top position. For now it seems his top spot is secure. He also has bold on most of the untimed levels.

In CCLP2, David's score of 6,051,180 is the highest total for any player. He holds +9 against anyone else on Checkerboard II, +4 on Cloner's Maze, and +5 on Key Color.

He is first place on the CCLP3 MS leaderboard with a score of 6,095,380. His exclusive records for this level set are +6 on Air Pocket, +2 on Fireball Tourism, +3 on Maginot Line, +1 on Hidden Depths, +9 on We'll Be Right Back, +47 on Grand Prix, +203 on You Can't Teach an Old Frog New Tricks and +64 on Suspended Animation.

He is first place on the CCLP1 MS leaderboard with a score of 6,006,250. His exclusive records for this level set are +1 on Bombs Away, +42 on Funfair, +2 on Time Suspension, and +1 on Chip Plank Galleon.

As of February 2021, he has only submitted scores for two levels in CCLP4.

Community contributions

Level design style

  • Befitting his nickname, almost every level of his creation contains a connection to the number pi somewhere. The character is often drawn in the level, but also the digits themselves can manifest in several ways, like a required sequence of steps to complete it (as in lesson 3.141592653589793238 and organized chaos).
  • Some of the more famous levels utilize advanced coding (including the most insane level ever!), glitches in Chip's Challenge which are often exclusive to one version of the game only, weird anomalies, and other crazily hard challenges. The result of this is often that specific and exact movements are required in specific directions (including the digits of pi, as described earlier) and in a specific order, even if this is not apparent or simply illogical.
  • It seems apparent that David not only designed levels with a specific type of solution in mind, but also with records that were difficult to attain. A simple level such as Road Block turns out to be a study in interesting ways to gain time using nails. Many times, correct understanding and use of the glitches present in a level will gain an extra second on the clock.
  • David has made several levels exploring the concept of creating a solvable level which takes ages to actually complete. The last level of pi.dat contains 13 rooms of fireballs and varying amounts of ice in them which cause the red buttons to be hit at different times, creating a very long cloning polyrhythm. This sequence will produce fruit only when all 13 glider and fireball clone machines in the southeast area activate in a rhythm where each succeeding monster knocks the next safely east in a domino pattern until the last glider detonates one bomb. On the 53rd occurrence of this cycle, the button in the corner will remove the bomb at the start, allowing Chip to exit. The total time required to beat this level, appropriately named the end of all time, is more than 314 septillion years (another pi nugget). In his following set, pi^2.dat, the almost identically named last level, end of all time, uses ice blocks for an even longer solution time.
  • In addition to the two levels mentioned above (which in practical terms are unsolvable), there remain a few devilishly perplexing levels of his that have not been reportedly solved. These are the final levels of minustwo.dat, called F, G, and H, which all share the same layout but with a decreasing number of blocks to be utilized in the solution. (The final level of the set, I, is not solvable, just like the final levels of his other sets.)
  • In addition to getting into the enviable habit of rarely reporting inoptimal scores on levels, from the start of his level making career, David had an aversion to updating any of his released levels. This can be seen from never having updated the first releases of his major sets even though some levels contain minor mistakes. For example, the tank area in Color Wheel from #35 of pi.dat was not quite as he intended it to be, but instead of updating the set, he included the intended version as a new level in pi^2, which was then later updated to the version now found in CCLP3.

External Links